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The state-to-state differential cross sections for some atom + diatom reactions have been calculated using a
new wave packet code, MAD-WAVE3, which is described in some detail and uses either reactant or product
Jacobi coordinates along the propagation. In order to show the accuracy and efficiency of the coordinate
transformation required when using reactant Jacobi coordinates, as recently proposed [J. Chem. Phys. 2006,
125, 054102], the method is first applied to the H + D2 reaction as a benchmark, for which exact time-
independent calculations are also performed. It is found that the use of reactant coordinates yields accurate
results, with a computational effort slightly lower than that when using product coordinates. The H+ + D2

reaction, with the same masses but a much deeper insertion well, is also studied and exhibits a completely
different mechanism, a complex-forming one which can be treated by statistical methods. Due to the longer
range of the potential, product Jacobi coordinates are more efficient in this case. Differential cross sections
for individual final rotational states of the products are obtained based on exact dynamical calculations for
some selected total angular momenta, combined with the random phase approximation to save the high
computational time required to calculate all partial waves with very long propagations. The results obtained
are in excellent agreement with available exact time-independent calculations. Finally, the method is applied
to the Li + HF system for which reactant coordinates are very well suited, and quantum differential cross
sections are not available. The results are compared with recent quasiclassical simulations and experimental
results [J. Chem. Phys. 2005, 122, 244304]. Furthermore, the polarization of the product angular momenta is
also analyzed as a function of the scattering angle.

I. Introduction

The differential cross section (DCS) provides the most
detailed information on the reaction dynamics,1-3 even more if
its dependence with the rotational polarizations of reactants and
products are considered.4-6 Nowadays, there are many theoreti-
cal treatments allowing its calculation.7-14 The quasiclassical
trajectory (QCT) method is probably the most commonly used7,8

because it is able to describe most of the features of the reactions
at a relatively low computational cost. However, the possible
importance of quantum effects might preclude classical ap-
proaches to describe the dynamics of the process. Until very
recently, most quantum simulations of DCSs for reactive
collisions were obtained with time-independent (TI) methods
based on hyperspherical coordinates.10,15-17 These methods are
able to calculate the whole S matrix at once, but the size of the
matrices involved grows quadratically with the number of basis
set functions, n, required to represent reactants and products.

The computational effort, however, increases as n3. Thus, they
are limited to systems with few degrees of freedom involved
in the reaction, being applied essentially to triatomic and few
tetra-atomic systems.18

Wave packet (WP) techniques provide a single column of
the S matrix but only need to store vectors and compute matrix/
vector multiplications.19,20 In addition, they provide information
over a wide range of energies in a single calculation but require
many iterations, especially for slow dynamics occurring in the
presence of long-lived resonances. The computational cost
involved is high, especially when taking into account that DCSs
are typically measured at one or just a few collisional energies.
This is why most WP calculations performed until now have
been restricted to integral cross sections (ICSs). A recent
review21 provides a extensive list of the systems studied with
these techniques.

Althorpe was the first to calculate an “exact” DCS with WP
methods.12 He used the reactant-product decoupling method22,23

to study the H + H2 prototype reaction and isotopic variants.24-26

This method is very efficient because the WP is split into several
parts, each of them confined to a single arrangement channel,
using the best adapted coordinates. The connection among the
different portions of the WP is done through imaginary
potentials. This procedure, however, presents problems when
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the reaction shows resonances by the presence of wells, which
would be strongly distorted by the partition of the configuration
space.

With the advent of massively parallel computers, it has been
possible to perform exact WP calculations using a single set of
coordinates for the full propagation.13,14 In most cases, product
Jacobi coordinates are used, transforming only the initial WP,
avoiding any transformation along the propagation. In these
coordinates, the initial WP cannot be factorized. For example,
a pure helicity state in reactant coordinates transforms into a
superposition of many helicity components in product coordi-
nates when using a body-fixed (BF) frame.

The use of reactant Jacobi coordinates to calculate state-to-
state reaction probabilities and scattering matrix amplitudes to
obtain DCSs has also been proposed.27 In this procedure, the
initial WP is represented by a single helicity component. The
evaluation of the state-to-state transition amplitudes requires,
however, the transformation from reactant to product Jacobi
coordinates at each iteration. This is made very efficiently
because only a single R′ value (R∞′ ) is required to evaluate the
flux28 and because the coordinate transformation is divided into
several steps, each of them requiring four loops at most. The
computational cost is then only a fraction of the action of the
Hamiltonian on the WP. It has been argued, however, that such
a transformation could not be accurate enough to produce
DCSs.14

The aim of this work is to show that such a transformation
method can provide excellent results and to apply it to the study
of Li + HF. In ref 27, the comparative efficiency of using
reactant or product Jacobi coordinates was discussed in terms
of the masses involved; for H + H′L f HH′ + L collisions
(where H/L denotes heavy/light atoms), reactant Jacobi coor-
dinates were considered to be the best adapted ones, while
product Jacobi coordinates were very well suited for H + LH′
f HL + H′. Here, we shall first check the reliability of the
method by applying it to the intermediate case of H + D2 f
HD + D as a prototype of direct reaction, where reactant
coordinates are slightly more efficient. The insertion reaction
H+ + D2 f HD + D+, however, involves the same masses,
but the potential presents a longer range because of its ionic
character, and product Jacobi coordinates become more efficient.
Calculations for some selected total angular momenta are shown,
and the state-selected DCSs are obtained within the random
phase approximation. The calculated DCSs are compared with
recent exact TI calculations29 and experimental results.30

A more detailed study is applied to the Li + HF f LiF(V′,
j′) + H reaction. This system constitutes a benchmark for
reactive scattering calculations since it is one of the lightest
reaction involving three different atoms, allowing quite reliable
potential energy surface (PES) calculations, for the ground31-34

and excited states.35,36 Experimentally, there are collisional37-41

as well as transition-state spectroscopy42 studies. Simulations
of spectroscopic processes give detailed information about the
electronic curve crossings giving rise to reaction barriers;
infrared excitation of the complex between reactants43,44 can be
used to probe the ground electronic state, electronic spectroscopy
probes the upper electronic states,35,36,45-47 and electronic
predissociation studies give information on the nonadiabatic
couplings.47-50 Theoretically, reactive collisions are the most
studied processes in this system, including QCT,41,51-53 quantum
TI,32,54-58 as well as time-dependent WP59-64 calculations.
Lately,thesestudieshavebeenextendedtoultracoldtemperatures.65,66

The large electric dipoles of the reactants and products make
this system ideal to study its stereodynamics experimentally,38,67-69

motivating many theoretical simulations.6,70-74 Despite all these
studies, the DCSs have only been calculated using the QCT
approach.41 The existence of many resonances and zero-point
effects in Li + HF collisions suggests that quantum mechanical
simulations of DCSs are the most adequate to mimic experi-
mental results. One of the main goals of this work is to calculate
quantum DCSs for this reaction and study the stereodynamics
of this reaction by analyzing the vector correlations on this
system.

The paper is structured as follows. Section II is devoted to
describe the method. In the first part of section III, the method
is applied to H + D2 and H+ + D2 reactive collisions to check
the accuracy compared with TI methods, discussing the relative
efficiency of using the reactants or products case, for such mass
combination. The second part of section III, describes the results
obtained for Li + HFf LiF + H, well suited for reactant Jacobi
coordinates, making emphasis on the final polarization of LiF
products and the kk′j correlations. Finally, section IV is devoted
to extract some conclusions.

II. Wave Packet Method

The DCS for AB(V, j) + C f A + BC(V′, j′) reactive
collisions, at an energy E, is commonly expressed in a BF frame
as9,75,76

where kVj ) (2µ(E - EVj)/p2)1/2 is the wave vector in the entrance
channel of energy EVj and dΩΩ′

J (Θ) are the reduced Wigner
rotation matrices77 depending on the center of mass (CM)
scattering angle Θ. J is the total angular momentum, with
projections Ω and Ω′ on the reactant and product BF z-axes,
respectively. Hereafter, bold letters are reserved for vectors,
quoted variables and quantum numbers refer to products, while
nonquoted refer to reactants. The definitions given below for
the case of reactant coordinates are equivalent to those for
products. The three atoms are in the x-z BF plane, with the
z-axis parallel to the vector R joining the CM of the diatomic
molecule AB to the third atom. It may be distinguished between
internal degrees of freedom R, r, and γ, with r being the AB
internuclear vector, and cos γ ) R · r/Rr, and the three Euler
angles φ, θ, and � defining the rotation from the space-fixed
(SF) to the BF frames. The m and µ are the reduced masses
associated with r and R, respectively.

DCS in eq 1 provides direct information about the kk′
correlation. However, it corresponds to an isotropic distribution
of the initial state, and the sum over final Ω′ washes out the
effects of the initial and final polarization of diatomic rotation
on the reactivity. In a BF frame, Ω (Ω′) is the projection of the
diatomic angular momentum j of the reactant (j′ of the product)
along the direction R (R′), which coincides asymptotically with
k (k′). Thus, the matrix defined as FΩ1Ω2,Ω′1Ω′2

Vj,V′ j′ (E, Θ) )
TV,j,Ω1fV′,j′,Ω′

1
(E, Θ)TV,j,Ω2fV′,j′,Ω′

2
(E, Θ) provides direct information

about the effect of the polarization of j on the reactivity and
the final polarization of products after the reaction. Since the
number of projections is high, FΩ1Ω2,Ω′1Ω′2

Vj,V′ j′ (E, Θ) is typically
expanded in state multipoles.4,5,78 The analysis can be simplified

∂σV,jfV',j'(E)

∂Θ ) 1
(2j + 1) ∑

Ω,Ω′
|TV,j,ΩfV',j',Ω′(E, Θ)|2

TV,j,ΩfV',j',Ω′(E, Θ) ) 1
2kVj

∑
J

(2J + 1)SV,j,ΩfV',j',Ω′
J (E)dΩΩ′

J (Θ)

(1)
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by defining the orientation (O) and alignment (A ) of the
angular momenta of reactants (R) and products (P) as

where (jR, ΩR) ≡ (j, Ω) and (jP, ΩP) ≡ (j′, Ω′).
For high j, the semiclassical limit can be used, in which

cos θj ) Ω/[j(j + 1)]1/2, θj being the angle between j and the
z-axis (and similarly for products). Thus, when the orientation
OR approaches +1 (or -1), the most probable event corre-
sponds to j pointing in the same (opposite) direction as k. If
the quantization axis is taken along k and/or an initial isotropic
distribution is assumed, the orientation and all odd terms of the
multipole expansion vanish. In photodissociation, the asymmetry
is introduced by circularly polarized light, so that integral and
differential78 cross sections can be different from 0. The
alignment A R, however, is generally nonzero and is the
primary quantity determined from polarization of laser-induced
fluorescence. It takes the limiting values of -1 and 2, depending
on whether the reaction is more probable when j is perpendicular
or parallel to k, respectively. Such limits provide a simple
procedure to analyze the correlation among the different vector
magnitudes.

In addition, note that since dΩΩ′
J (Θ) f 0 when Θ f 0 or π,

there is only ΩR,P ) 0 contributing at such angular values. Thus,
A ) -1 at Θ ) 0, π.

As an example, in ref 62, this procedure was used with the total
ICS of the Li + HF(V ) 0,1 and j ) 0-3) reactive collisions.
Important steric effects were found for V ) 0, showing a clear
preference for collinear collisions in which the HF reactant gets
vibrationally excited more easily, as a required condition for the
reaction to occur. For V ) 1, however, the alignment was close to
0, thus showing no clear preference since the vibrational excitation
of HF was already enough to activate the reaction.

An alternative study was done on this reaction by Alvarino et
al.71,72 using the stereodirected representation of Aquilanti
et al.79 In such studies the S matrix for a particular J value was
transformed from the V, j representation to a DVR-like one, giving
information about the attack and recoil angles. Here, we shall focus
our attention on the kk′j′ correlations by studying the polarization
of product angular momenta as a function of the scattering angle.

The main quantities in eq 1 are the S matrix elements,
SV,j,ΩfV′,j′,Ω′

J (E), which provide all of the information about the
collision process. In practice, it is more efficient to calculate
the S matrix in a parity-adapted basis set and then transform it
to the S matrix whose elements are used in eq 1 through the
expressions

where f ) [(1 + δ0Ω)(1 + δ0Ω′)]1/2/2, and ε( are used to denote
the parity under spatial inversion, ε ) (1.

The calculation of SJε using WP methods in product Jacobi
coordinates has been described previously.13,14 Here, it will be
described using reactant Jacobi coordinates, as proposed re-
cently,27 making emphasis on the differences.

This method has been implemented in the code MAD-
WAVE3. This code uses either reactant or product Jacobi
coordinates to obtain state-to-state scattering matrix elements,
and it also treats photoinitiated processes. In addition, it
considers several coupled electronic states described in a diabatic
representation. The code is parallelized using the MPI library,
with respect to the helicity components and also the angular
grid points.

A. Propagation. One of the most commonly used time-
dependent integrators is the Chebyshev real WP propagator, or
slight variants.80-85 In this method, the evolution operator is
expanded in modified Chebyshev polynomials,81 so that the WP
at time t is defined as

where R denote the quantum numbers required to specify the
state of the reactants. ΨR(k) are obtained using the modified
Chebyshev recurrence86

The coefficients fk(Ĥs, t) in eq 4, are given by87

where Jk(x) are Bessel functions of the first kind. Ĥs ) (Ĥ -
E0)/∆ is the scaled Hamiltonian, with E0 ) (Emax + Emin)/2 and
∆ ) (Emax - Emin)/2. Emax and Emin are the minimum and
maximum energy values of the real Hamiltonian of the system,
Ĥ, represented in the grid and basis set used.

The real absorbing function, �, in eq 5, depends on the
dissociative coordinates and serves to avoid the boundary
problems arising from the use of finite grids, such as reflection
and transmission. Typically, � ) -Ax(x - xI)n for x > xI and 1
elsewhere (with x ) r or R). The absorption parameters xI and
Ax are optimized to minimize the reflection and transmission
effects that occur when the WP reaches the edges of the grid,
leaving nearly unaffected the portion of the WP in the internal
region.88

To extract the magnitudes for a fixed total energy, the TI
eigenfunctions of the total Hamiltonian, ΨR

+(E), with total energy
E, are obtained in terms of the ΨR(k) modified Chebyshev
components as89

with

OVj,V'j'
R,P (Θ, E) ) ∑

ΩR,P ( ΩR,P

√jR,P(jR,P + 1))UVj,V'j'
ΩR,P

(Θ, E)

AVj,V'j'
R,P (E, Θ) ) ∑

ΩR,P
( 3(ΩR,P)2

jR,P(jR,P + 1)
- 1)UVj,V'j'

ΩR,P
(Θ, E)

UVj,V'j'
ΩR,P

(Θ, E) ) ∑
ΩP,R

|TV,j,ΩfV',j',Ω′(E, Θ)|2/ ∑
ΩΩ′

FΩΩ,Ω′Ω′
Vj,V'j' (E, Θ)

(2)

SV,j,ΩfV',j',Ω′
J (E) ) SV,j,-ΩfV',j',-Ω′

J (E) )

f(SV,j,ΩfV',j',Ω′
Jε+ + SV,j,ΩfV',j',Ω′

Jε- )

SV,j,ΩfV',j',-Ω′
J (E) ) SV,j,-ΩfV',j',Ω′

J (E) )

f(SV,j,ΩfV',j',Ω′
Jε+ - (-1)JSV,j,ΩfV',j',Ω′

Jε- )

(3)

ΨR(t) ) ∑
k

fk(Ĥs, t)ΨR(k) (4)

ΨR(k ) 0) ) ΨR(t ) 0)

ΨR(k ) 1) ) e-�ĤsΨR(k ) 0)

ΨR(k + 1) ) e-�{2ĤsΨR(k) - e-�ΨR(k - 1)}
(5)

fk(Ĥs, t) ) (2 - δk0)e
-iE0t/p(-i)kJk(t∆/p) (6)

ΨR
+(E) ) 1

2πpaR(E) ∑
k)0

∞

ck(Ĥs, E)ΨR(k) (7)
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B. Wave Packet Representation. The WP is expressed in
Jacobi coordinates, reactants or products, in a BF frame as
defined above. The same representation is valid for WP, ΨR(t),
TI wave functions, ΨR(E), and Chebyshev components, ΨR(k),
and we shall describe it only for the last one, ΨR(k). In a partial
wave expansion, these coefficients are calculated for a particular
angular momentum J and a given parity under total inversion,
ε, separately, each one being represented as

where the 〈r,R,γ|ΦΩ
Jε(k)〉 coefficients depending on the internal

degrees of freedom, r, R, and γ, are propagated numerically
when eq 9 is introduced into eq 5. The radial variables r and R
are described in finite grids of equidistant points, while γ is
described by Gauss-Legendre quadrature points. For the Euler
angles, a parity-adapted basis set is used, of the form

where DMΩ
J* are Wigner rotation matrices.77 When the system

presents open-shell fragments and several electronic states
participate, it is convenient to include the electronic wave
function in the angular basis set to build more general symmetry-
adapted functions.90 Since we are applying the method for
reactive scattering on the ground electronic surface, we shall
omit here the electronic state for simplicity.

When the Hamiltonian operator is applied to the functions
of eq 9, a set of coupled differential equations is obtained.91

The radial kinetic terms are solved using the fast Fourier
transform method. The action of the angular momentum
operators is performed by multiplying the WP by a matrix91 as

where j and l are the angular momenta associated with r and
R, respectively. In the above expression the A matrices are
defined as

with

The only couplings between adjacent Ω components are due
to the nondiagonal terms of l 2. This calculation is very well
suited for massively parallel computing;91,92 a Ω value is
assigned to each processor, and the exchange of information is
only among adjacent processors because of the band structure
of the l 2 matrix elements. The present implementation of the
method parallelizes with respect to Ω and also on γ with the
MPI library, becoming very efficient even for a large number
of Ω components. The angular momentum terms are the only
ones coupling different γn points, and unfortunately, the
corresponding matrices do not have so many zeros. Therefore,
the exchange of information is among all processors involved,
and the efficiency gets lower. However, for low J, it is
convenient to reduce computing times by increasing the number
of processors.

In the case that R approaches 0, l 2/2µR2 becomes very large.
It is necessary to limit it to some finite value, so that Emax does
not become too large. Several procedures have been proposed.
Lin and Guo14 diagonalized the 〈WMΩ

Jε YjΩ| l 2|WMΩ′
Jε Yj′Ω′〉 matrix

to limit the eigenvalues to Ecut and then transform back to the
BF frame. The resulting matrix was completely full, which
involves information exchange among all processors having
different Ω values. Thus, such a procedure would become
inefficient for massive parallelization. The second method13

consists of limiting the diagonal terms of the
〈WMΩ

Jε YjΩ|l 2|WMΩ′
Jε Yj′Ω′〉 matrix (in the BF representation) to Ecut,

setting to 0 the couplings corresponding to the modified diagonal
terms with the rest of the Ω’s. This procedure assures the band
structure of the matrix, without affecting the parallelization, but
introduces some instabilities for high J’s.

In this work, we follow a different strategy. A mean
value is defined as the average of all eigenvalues in the
〈WMΩ

Jε YjΩ|l 2|WMΩ′
Jε Yj′Ω′〉 matrix as a function of R. When it

becomes equal to a given quantity Ecut, the value of Rcut is set.
Thus, for R < Rcut the value of R is substituted by Rcut for a
particular J, j pair. In this way, the band structure of the matrix
is maintained and the instabilities disappear, provided that Ecut

is sufficiently high.
C. Initial Wave Packet. In reactant Jacobi coordinates, the

initial state of the fragments, R ) J, ε, V, j, and Ω0, at a
sufficiently long distance is taken as

where �Vj(r) are the vibrational eigenfunctions of the AB(V, j)
reactant and YjΩ(γ) are normalized associated Legendre func-
tions. Initially, gΩ

J,ε,V,j,Ω0(t ) 0) ) δΩ,Ω0
exp[-(R - R0)2/2Γ2 -

iK0R]/(πΓ2)1/4, that is, an incoming complex Gaussian.
The asymptotic distance, where the initial WP is placed,

corresponds to that distance where the potential between the
two reactants is 0. This implies the use of larger grids for J >
0 since the centrifugal term varies as R-2. In order to avoid this
problem, another alternative is followed, which consists of the
following:

(1) Backward propagatation in time, up to a time at which
the average centrifugal energy is negligible. The propagation
is performed using a split operator propagator on a single radial

ck(Ĥs, E) )
(2 - δk0)pe

-ik arccos(E-E0)/∆

√∆2 - (E - E0)
2

(8)

〈r, R|ΨR
JMε(k)〉 ) ∑

Ωg0

〈r, R, γ|ΦΩ
Jε(k)〉

rR
WMΩ

Jε (φ, θ, �)

(9)

WMΩ
Jε (φ, θ, �) ) � 2J + 1

16π2(1 + δ0,Ω)
(DMΩ

J* (φ, θ, �) +

ε(-1)J+ΩDMΩ
J* (φ, θ, �)) (10)

j2〈Rk, rl, γn|ΦΩ
Jε(k)〉 ) ∑

n'

An',n
j 〈Rk, rl, γn|ΦΩ

Jε(k)〉

〈WMΩ′
Jε |l 2|WMΩ

Jε 〉〈Rk, rl, γn|ΦΩ
Jε(k)〉 ) ∑

n'

An'Ω′,nΩ
l 〈Rk, rl, γn|ΦΩ

Jε(k)〉

(11)

An',n
j ) ∑

j
√w′nYjΩ(γ′n, 0)j(j + 1)√wnYjΩ(γn, 0)

An'Ω′,nΩ
l ) ∑

j
√w′nYjΩ′(γ′n, 0)〈WMΩ′

Jε YjΩ′|l
2|WMΩ

Jε YjΩ〉√wnYjΩ(γn, 0)

(12)

〈WMΩ
Jε YjΩ|l 2|WMΩ′

Jε Yj'Ω′〉 ) δΩ,Ω′[J(J + 1) + j(j + 1) - 2Ω2] -

δΩ,Ω′(1√1 + δΩ,0 + δΩ′,0√J(J + 1) - ΩΩ′√j(j + 1) - ΩΩ′
(13)

ΨR(t ) 0) ) ∑
Ω

WMΩ
Jε (φ, θ, �)�Vj(r)YjΩ(γ)〈R|gΩ

J,ε,V,j,Ω0(t ) 0)〉

(14)
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grid (usually large) for a particular J, ε, V, j state, including all
possible Ω channels.

(2) After this propagation, Coriolis couplings produce a WP
with several Ω components. All of the components of the WP
with Ω * Ω0 are set to 0 to start with a proper Ω0 value. The
WP is then renormalized, and the incident flux is evaluated as

(3) The WP is propagated forward in time for the same
number of steps, so that at the end, the WP is essentially placed
at the same position as the initial Gaussian.

(4) To start the propagation for the reactive collision, the WP
at time zero is reconstructed according to eq 14, with the new
gΩ

J,ε,V,j,Ω0(t ) 0) obtained in this procedure. To make the initial
WP real, the complex conjugate of each gΩ

J,ε,V,j,Ω0(t ) 0) is added
and renormalized. Thus, ΦΩ

Jε(k) Chebyshev components remain
real along the propagation.81,83-85

When using reactant Jacobi coordinates, after this procedure,
the propagation starts. When using product Jacobi coordinates,
however, the initial WP is transformed from reactant to product
coordinates. As a result, the initial WP expressed in product
Jacobi coordinates is a superposition of different Ω′ values, and
each component is given by

where cos � ) R ·R′/RR′.
D. S Matrix Elements. Parity-adapted S matrix elements

are obtained by a transformation from the SF frame as

where

are the SF-to-BF transformation matrix elements.
The S matrix in the SF reference system is obtained from

the flux of the TI eigenfunctions at the asymptote93 as

where hl
(2)(x) are spherical Bessel functions of the third kind

and

This last quantity is obtained as a transformation from the
Chebyshev coefficients to the time-independent wave func-
tion, eq 7, followed by a BF-to-SF frame transformation.

The coefficients CV′j′Ω′(k) in the above equation are simply
the overlap between the WP and the final states of the products
at R′ ) R∞′ in product Jacobi coordinates, that is

where the indexes referring to the initial state have been
suppressed for clarity. These coefficients are directly obtained
by numerical integration when using product coordinates in the
propagation. When using reactant coordinates, however, a
reactants-to-products transformation must be done at each
iteration k which might be very demanding computationally.
An efficient method for this transformation has been proposed
recently,27 requiring much less effort than the application of
HΨ(k). In such a method, the transformation is not made in a
single step, as in eq 16, but it is divided into the following three
steps:

(1) The asymptotic states of the products, �V′j′(r′)Yj′Ω′(γ′),
are represented in the mixed coordinates (R∞′ , R, γ) (according
to possibility A of ref 27). This is done once before starting
the propagation, and the transformed functions are kept in a
two-dimensional grid as small as possible to save memory
storage and computation time.

(2) At each iteration k, the Chebyshev component is
transformed to an intermediate system of coordinates, that is

The transformation matrix, given in eq 16 of ref 27, required
for this transformation is constructed before the propagation and
stored.

(3) The transformation from reactant to product BF frames
is performed according to

where the T matrix is given by eq 23 of ref 27.
(4) Finally, the overlaps CV′j′Ω′(k) are calculated by numerical

integration.

III. Results and Discussion

The WP simulations have been performed using the following
PESs: the BKMP2 by Boothroyd et al.94,95 for H + D2 f HD
+ D, the ARTSP by Aguado et al.96 for H+ + D2f HD + D+,
and the APW by Aguado et al.97 for Li + HFf LiF + H. The
parameters used in the WP calculations are listed in Table 1
for the three systems, indicating if reactant or product Jacobi
coordinates were used. For the case of the H + D2 reaction, TI
calculations with hyperspherical coordinates have been per-
formed for comparison using the ABC code.11 In this last case,
the following parameters have been used: the maximum

aR(E) ) 1
2i� µ

2πp2kVj

∫ dR eikVjR〈R|gΩ0
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rotational quantum number is jmax ) 50, the helicity truncation
parameter is Ωmax ) 10, the maximum hyperradius is Fmax )
12.0 Bohr, the number of log-derivative propagation sectors is
110, and the maximum internal energy in any channel is Emax

) 2.0 eV.
A. H + D2 Collision in Reactant Coordinates. This reaction

has been studied intensively both experimental and theoretically
(see, for example, ref 98), and here, it is used as a benchmark.
Calculations for all angular momenta, from J ) 0 up to 25,
were done for the H + D2(V ) 0, j ) 0) f HD(V′, j′) + D
reaction using the ABC code and the MAD-WAVE3 code with
reactant Jacobi coordinates, giving rise to the DCSs shown in
Figure 1. Similar calculations were carried out recently by Chu
et al.99 and are used here as a benchmark to check the accuracy
of the method. The “exact” reactant wave packet (reac-WP)
calculations presented here include all possible Ω projections
and required 6000 iterations to be converged. The state-to-state
DCSs obtained are compared with TI results, showing an
excellent agreement. Thus, the use of reactants coordinate,
undergoing the coordinate transformation at each iteration, yields
accurate results. The DCSs are perfectly converged when the
number of helicity components is limited to Ωmax ) 11.

The same calculations are carried out but using product Jacobi
coordinates (prod-WP), and the parameters used are very similar
to those reported previously by Hankel et al.13 The number of
angular grid points required (∼50) is larger than that in the reac-
WP case. A higher number is needed because the permutation
symmetry of the D2 reactants is not properly taken into account
when using product coordinates. In product coordinates, the
initial WPs correspond to a superposition of many Ω′, while in
reactant coordinates, there is only one Ω. In fact, this number
increases with the position of the initial WP, determined by R0.
The Coriolis term couples different Ω′, and the initial distribu-
tion in the helicity components is expected to become even
broader along the propagation. However, the DCSs do not seem
to be too sensitive to such a situation. In fact, the DCSs obtained
in prod-WP show a degree of convergence with Ωmax′ similar
to that obtained using the reac-WP method.

A comparative analysis of the efficiency of both WP
approaches reveals that the method based on reactant coordinates
yields slightly cheaper calculations, especially due to the
considerable reduction in the number of angular grid points.
The number of helicity components required to converge the

DCSs is slightly smaller when using product coordinates, but
the reduction is so small that it becomes nearly insignificant
computationally.

The alignment of rotational angular momenta of HD products,
shown in Figure 2, is -1 at Θ ) 0 and π, as commented above.
For other scattering angles, however, it changes with the final
j′ in a nontrivial way, varying notably with the initial transla-
tional energy as well. Therefore, the analysis of A can be
used as a sensitive magnitude for the description of such a direct
reaction.

B. H+ + D2 Collision in Product Coordinates. Part of the
advantages of using reactant Jacobi coordinates are lost for long-
range potential interactions; when R∞ becomes large, dense grids
have to be used to represent the product wave functions. This
is the case of the ionic H+ + D2(V ) 0, j ) 0) f HD(V′, j′) +
D+, which follows an insertion mechanism.

The dynamics has been described in detail previously.29 It is
found that nearly all helicity components have to be included
in the calculations to reproduce correctly the exact results
obtained with the TI method.100 Until now, the WP calculations
performed on this reaction beyond the centrifugal sudden (CS)
approach101,102 have only included very few helicity components
(up to Ωmax ) 5), which cannot guarantee converged results.
In this work, we use product Jacobi coordinates including all
Ω projections. A very large number of iterations is needed to
converge the results, ∼105, and the calculation of all partial
waves becomes very demanding.

As in the previous case, the use of reactant coordinates is
slightly more efficient than that of products but only for low J
because of the reduction in the number of angular grid points
when considering the permutation symmetry. In fact, reac-WP
and prod-WP calculations performed up to J ) 30 (not shown

TABLE 1: Parameters Used in the WP Calculations in
Reactant and/or Product Jacobi Coordinates for the Three
Reactions Studied

H + D2 f HD + D H+ + D2 f HD + D+
Li + HF f

LiF + H

reactants coord. products coord.
reactants

coord.

rmin/Å 0.1 0.3 0.25
rmax/Å 8 14 17.5
Nr 128 256 400
rI/Å 6 11 13
AR 0.5 Å-2 0.002 Å-4 0.017 Å-2

Rmin/Å 0.1 0.01 0.5
Rmax/Å 8 18 17.5
NR 128 512 512
RI/Å 6 14 14.5
AR 0.5 Å-2 0.002 Å-4 0.025 Å-2

Nγ 36 70 50
R0/Å 3.2 8.5 13
E0/eV 0.6 0.25 0.2
∆E/eV 0.2 0.12 0.07
R∞′ 5.6 15 10
Vcut/eV 2.5 2.5 3
Ecut

l /eV 6 8 7

Figure 1. State-to-state DCSs obtained with TI and reac-WP calcula-
tions for H + D2(V ) 0, j ) 0) f HD(V′ ) 0, j′) + D, for Etrans )
1.0083 eV.
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here) are in excellent agreement. For higher J, however, the
situation changes completely. Since the reaction is essentially
statistical, the higher j′ are obtained with the highest probability,
and therefore, also high Ω′ are very probable. In reactant
coordinates, at long R∞′ where the transformation to products is
done, the number of angular grid points is reduced in the
energetically accessible region because the skewing angle is
rather small. Moreover, the accessible angular points approach
the linear configuration. Since ΦΩ ∝ sinΩ γ, for γ ) 0 and π,
this situation implies that high Ω are very poorly described
unless huge angular grids are considered. Those Ω . 0
components are, on the other hand, of great importance given
the enormous effect of the Coriolis coupling in such an insertion
reaction with such low masses. A reac-WP calculation would
require increasingly large angular grids as J increases, with the
corresponding computational difficulty. For this reason, product
coordinates are more efficient for this kind of reactions.

Since this insertion reaction is known to be rather well
described by statistical methods, the random phase approxima-
tion is expected to work very well.103 In this approximation,
the phase of the S matrix is considered to vary very rapidly
with J due to the presence of a high number of resonances. As
a consequence, the interference term appearing in eq 1 may be
neglected, obtaining a good description of the exact DCS. For
this reason, only state-to-state reaction probabilities are needed,
not the amplitudes. These probabilities are calculated for some
J values, 0, 5, 10, ..., 45, and 50 in this case, including all
possible Ω′ components. For those J’s which were not directly
calculated, the probabilities are interpolated using a variation
of the J-shifting approach. The total reaction probabilities
obtained for some J’s are shown in Figure 3, showing a highly

oscillating shape due to the presence of many resonances. The
present prod-WP results are compared with probabilities ob-
tained previously29 by means of a statistical quantum method103-105

(SQM), which, despite not describing the resonant structure,
provides a good average reproduction of exact TI results. For
high J, the reaction probabilities at the threshold show a
maximum, which becomes more significant as J increases. This
structure corresponds to the high J maximum of the opacities
studied in ref 29 with exact TI and statistical methods.

The total reaction cross sections obtained with the prod-WP
and the SQM methods are compared in the top panel of Figure
4. Due to the higher zero-point energy of HD products (∼0.05
eV), the cross section shows a sudden increase at this threshold
and then a slow decrease. In general, the SQM reaction
probabilities are higher than those obtained with the prod-WP
method, except for intermediate energies and low total angular
momenta. For the two exact TI points (EQM in the figure), a
similar situation holds. However, for the lower energy of 0.1
eV, the TI result is higher than the prod-WP result. The very
oscillating shapes shown in Figure 3 associated with very long-
lived resonances are difficult to converge completely, especially
at low energies, since it implies very long propagations, perhaps
longer than those performed here. The numerical problems
associated with this can explain the underestimation of the total

Figure 2. Alignment parameter obtained using eq 2 from reac-WP
calculations for H + D2(V ) 0, j ) 0) f HD(V′ ) 0, j′) + D, for
several Etrans.

Figure 3. Total reaction probabilities obtained using the prod-WP
method, including all helicity components Ω′, for the H+ + D2(V ) 0,
j ) 0) f HD + D+ reaction, for different total angular momentum J,
as a function of the translational energy. SQM results, from ref 29,
have been included for comparison.
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cross section obtained at low energies for the prod-WP. At 0.524
eV, however, the prod-WP results are in excellent agreement
with respect to the exact TI results and are a significant
improvement with respect to the adiabatic centrifugal sudden
approach results reported in ref 29, which yielded a cross section
of 11.6 Å2.

The total reaction probability as a function of angular
momentum for a translational energy of 0.524 eV, in the bottom
panel of Figure 4, shows the oscillating structure associated with
the resonances appearing in the reaction for all J’s. Since those
resonances correspond to very excited quasi-bound states, very
dense grids are required to describe precisely their nodal
structure. It is difficult to achieve the description of the nodes
of all of the resonant structures with the same accuracy when
using different coordinates. This is why the opacity function
obtained with exact WP propagation does not match completely
the exact TI results, not only for the interpolated J’s but also
for those J’s at which “exact” numerical calculations were
carried out.

The rotationally resolved ICS for HD(V′ ) 0, j′) products,
in the middle panel of Figure 4, shows a very flat structure,
and the agreement between the two methods is rather satisfac-
tory. The TI results at 0.524 eV exhibit some shallow oscillations
which are not present in the prod-WP results at the same energy.

However, prod-WP results at close energies display structures
similar to those shown by TI results, which could be interpreted
as evidence that such structures are due, again, to some particular
resonance.

The state-resolved DCS obtained with the TI method presents
a very oscillating structure, while the prod-WP results do not,
as shown in Figure 5. The random phase approximation invoked
in the present WP approach precludes considering all of the
interference terms in eq 1, introduced in the TI method. Also,
the slight asymmetry of some of the angular distributions
obtained with the TI approach cannot be reproduced completely
by the WP results, which, according with the above-mentioned
approximation, are strictly forward-backward symmetric. De-
spite these differences, the overall agreement is very good. In
fact, both theoretical approaches are found to describe quite well
the available experimental results.30

The DCS seems to exhibit a monotonic behavior as a function
of energy, as revealed in Figure 6, with two equal maxima at
Θ ) 0 and 180°, decreasing as the energy increases. The
oscillations obtained as a function of energy are due to
resonances as well as to the peaks appearing as a function of Θ
in Figure 5, which are lower than the TI results because in the
RPA, the interference terms are neglected, but they are notice-
able especially for Θ close to 0 or π. Apart from these
oscillations, especially important at forward and backward
scattering directions, the DCSs show a quite simple structure,
in nearly perfect agreement with statistical methods.29 As new
j′ channels become open, the cross section shows a sharp

Figure 4. Reaction probabilities as a function of total angular
momentum J for the H+ + D2(V ) 0, j ) 0)f HD(V′, j′) + D+ reaction
at a translational energy of 524 meV summed over all V′, j′ channels
(bottom panel) and ICS for V′ ) 0, j′ (middle panel). Prod-WP results
are compared with the exact TI results of ref 29. ICSs for two close
energies, 520 and 530 meV, calculated with the prod-WP method are
also included for comparison. In the top panel, the total integral cross
sections for the H+ + D2(V ) j ) 0) as a function of translational
energy obtained with the prod-WP, SQM, and EQM29 methods are
compared.

Figure 5. State-resolved DCS for the H+ + D2(V ) 0, j ) 0)f HD(V′,
j′) + D+ reaction at a translational energy of 0.524 eV obtained with
the prod-WP method compared with the exact TI results from ref 29.
The points are the experimental results of ref 30.
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increase up to a maximum whose value depends linearly on j′
since the number of accessible sublevels increases to 2j′ + 1.

For this nearly statistical reaction, the alignment of rotational
angular momenta of HD products, shown in Figure 7, becomes
nearly always close to 0. This behavior only changes at Θ ) 0
and π where A ) -1 for the reasons commented above. The
value of A ) 0 clearly indicates that j′ and k′ are randomly
aligned. Since the reaction proceeds through long-lived reso-
nances, the system rotates many times, erasing any dependence
on the initial conditions. In addition, the resulting mechanism
does not present any particular j′k′ correlation because following
statistical arguments, all final helicities are formed with the same
probability since they correspond to the same energy for a
particular V′, j′ channel. This explains the A ≈ 0 obtained.
The small oscillations can be associated with the neglect of
interference terms invoked in the RPA and are expected to

increase slightly for an exact treatment, as obtained here for H
+ D2 reaction, in Figure 2.

C. Li + HF Collision in Reactant Coordinates. The two
reactions discussed above have the same mass combination,
whose skewing angle has an intermediate value, and no
particular advantages seem to be gained by using either reactant
or product Jacobi coordinates.27 Li + HF f LiF + H, as a
prototype of H + H′Lf HH′ + L reactions, is more efficiently
described in reactant coordinates.27 No quantum simulation of
the DCS has been reported until now, and one goal of this work
is to calculate it. For this purpose, reac-WP calculations have
been done here for J ) 0, 1, 2, ..., 45, including Ωmax ) 7, 15,
and 31. The vibrationally resolved reaction probabilities (Figure
8) obtained for the three cases are indistinguishable, thus
ensuring a good convergence with the number of Ω’s. The total
reaction cross section is shown in the top panel of Figure 8 up

Figure 6. Three-dimensional plot of the state-resolved DCS (in Å2/sr) as a function of the CM scattering angle and translational energy for the
H+ + D2(V ) 0, j ) 0) f HD(V′, j′) + D+.
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to 0.25 eV, and it is compared with previous QCT results
obtained using the same PES. The experimental results of Höbel
et al.,40 also included in Figure 8, in arbitrary units, have been
multiplied by an arbitrary scaling factor. The total cross section
exhibits oscillations as a function of energy, which are associated
with the corresponding ones of the reaction probabilities, in turn
explained by bound-state structures at the transition state.62 In
addition to these structures, the reaction at low energy seems
to be mediated by a large number of resonance peaks. This
feature, also found in other PESs,62 would explain the differences
found between QCT and quantum results. A better comparison
with the experimental results should include a distribution of
initial rotational states of the HF reactants.

The QCT and reac-WP total DCSs are compared in Figure 9
for some selected collisional energies and present significant
differences, which are also attributed to quantum effects, such
as the resonances discussed above. The angular distributions
display a complicated structure with an overall preference
toward forward scattering. A further analysis at a state-to-state
level reveals a different behavior of the different final LiF(V′,
j′) rovibrational states, as shown in Figure 10. Thus, for V′ ) 0,
the DCS corresponds essentially to forward scattering; for V′ )
1, it is backward, while for V′ ) 2, it is the sideways direction.
These differences indicate that there are several mechanisms;
the existence of a prominent peak in either the forward or
backward direction for V′ ) 0 and 1 is typical of a direct
stripping or rebound mechanism, respectively, while the side-
ways, more isotropic distribution is more typical of an indirect
mechanism.106 The indirect pathways for V′ ) 2 could be
explained by the resonances, leading the system to rotate several

times during the formation of a complex, which induces a much
isotropic angular distribution.

The direct processes are interpreted in terms of the so-called
direct interaction with product repulsion (DIPR) mechanism.107

The ground electronic state is the result of a curve crossing
between a covalent and an ionic electronic state correlating with
reactants and products, respectively. The saddle point in the
ground electronic state is the result of the crossing. The sudden
change from covalent to ionic in this region can be interpreted
as a “jump” of an electron from the Li to the H atom, following
a harpoon-like process, at a bent geometry. The transient HF-

is in a repulsive potential curve, and the H atoms fly apart
rapidly, “pushing” the F atom, leading to rotationally excited
Li+F- products. The departing H atom is very light, and it can
be assumed that l ′ , j′. Since l > j, it can be argued that l ≈
J ≈ j′. The direct stripping and rebound mechanisms are
associated with high and low total angular momenta, which
would imply high and low j′ values, respectively. The two
distributions obtained for V′ ) 0 and 1 present a double forward/
backward peak at approximately the same j′ ) 25 value in
Figure 10.

The dominance of the forward/backward peaks depends on
J. Thus, when including only J < 20, the velocity distribution
for V′ ) 2 does not appreciably change. However, for V′ ) 0
and 1, significant modifications can be observed; with only low
J’s, the velocity distribution becomes completely sideways, with

Figure 7. Alignment of the HD rotational products as a function of
the scattering angle for the H+ + D2(V ) 0, j ) 0) f HD(V′, j′) + D+

at a translational energy of 0.524 eV.
Figure 8. Reaction probabilities (bottom panels) for the Li + HF(V )
j ) 0, J)f LiF(V′) + H reaction as a function of translational energy.
(Top panel) Li + HF(V ) j ) 0) total reaction cross section obtained
in this work, compared with previous QCT41 and experimental40 results.
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much lower probabilities. Note that the system can, in principle,
rotate more for high J’s, thus leading to broader angular
distributions. Sideways distributions are therefore attributed to
the resonances appearing at low J’s, leading to indirect
mechanisms.

The angular distribution of recoil velocities of products,
D(Θ,Ekin′ ), is more directly obtained in time-of-flight or similar
experiments. Such a quantity corresponds to an average over
the initial relative velocity distribution (of energy Ekin) between
reactants, that is

where g(Ekin) is the distribution of relative translational energy,
which is taken as a Gaussian function, exp[-(Ekin - Ekin

0 )2/∆2].
The need for DCSs at different energies does not imply an
additional computational effort since there is information over
a wide range of energies in WP calculations. The results
obtained here for three selected initial kinetic energies, Ekin

0 , are
shown in Figure 11 for ∆ ) 5 meV. For Ekin

0 ) 0.241 eV, the
average does not change the discussion made above for the state-
resolved cross section shown in Figure 11. Since the energy of
LiF(V′ ) 0, j′ ) 0) fragments is 0.08 eV below the HF(V ) 0,

j ) 0), the maximum ring for V′ ) 0 is at ∼0.32 eV. For V′ )
0, the backward peak is three times lower than the forward one.
For V′ ) 1, 0.03 eV above the initial threshold, the rings are
shorter, presenting the preference toward the backward direction.
Finally, for V′ ) 2 at 0.14 eV, the distribution is clearly sideways
and wider.

For the other two lower energies, V′ ) 2 is closed, and
D(Θ,Ekin′ ) for V′ ) 0 is also mainly forward but shows important
sideways and broad wings. For V′ ) 1, it is backward but, in
general, much broader. In fact, for these lower energies, the
reaction is mediated by resonances,62 as can be seen in the
reaction probabilities shown in Figure 8, which explains why
the intensity is more isotropically distributed.

The rotational alignment of LiF products, shown in Figure
12, is always very close to -1 in the forward/backward
directions. This happens in a much broader interval than in the
previous two cases and therefore is not simply due to the
geometric aspect introduced by the behavior of dΩΩ′

J (Θ), as
discussed above. This clearly indicates that j′ is almost
perpendicular to k′ for the backward and forward directions.
This can be explained by the direct DIPR mechanism since when
H leaves, it pushes the F atom, making LiF rotate in a plane
containing k′, so that j′ is perpendicular to it. Since this happens
for all energies and all j′ values, and considering that j′ ≈ l, it
may be concluded that j′ is perpendicular to the kk′ plane.
Similar features were already found in electric depletion
experiments,108 in agreement with phase-space model simula-
tions.4

For sideways angles, however, the alignment becomes
positive again for nearly all j′ and energies considered. For V′
) 0, the sideways probability is much lower than that for the
forward or backward directions but still significant to allow its
numerical determination. The corresponding alignment gets
closer to 2 for the three energies considered, indicating that j′

Figure 9. Total differential cross section for the Li + HF(V ) j ) 0)
(summing on all final LiF states) for several translational energies and
compared with the QCT results of ref 41.

D(Θ, E′kin) ) ∑
V'j'

∫ dEkin g(Ekin)δ(EVj + Ekin -

EV'j' - E′kin)
∂σV,jfV',j'(Ekin)

∂Θ (24)

Figure 10. Rotationally resolved differential cross section (in Å2/sr)
for the Li + HF (V ) j ) 0)f LiF(V′, j′) + H reaction for a translational
energy of 0.241 eV, for the three final vibrational states, V′ ) 0, 1, and
2.
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becomes nearly parallel to k′. If such change is attributed to
the existence of indirect processes or resonances, it is interesting
that A is not 0, as it is for the H+ + D2 case discussed above.
The process does not seem to become statistical probably
because the corresponding resonances are much wider, with
shorter lifetimes, than those attributed to the transition state.62

The fact that A becomes nearly 2 should then be attributed to
resonances associated with Ω′ . 0.

IV. Conclusions

In this work, we have presented a wave packet method to
calculate state-to-state differential cross sections for A + BC
f AB + C reactive collisions. The present method has several
things in common with a couple of previous wave packet
methods13,14 in which product Jacobi coordinates were used.
Apart from some small technical differences, the major innova-
tion of the present method is that reactant Jacobi coordinates
are used as described in ref 27 to calculate the S matrix elements.
The method has been implemented with a FORTRAN code,
MAD-WAVE3, which uses either reactant or product Jacobi
coordinates to extract the state-to-state S matrix elements and
is parallelized using the MPI library in the helicity components
Ω and in the angular grid points.

The differential cross sections obtained for the neutral H + D2

reaction obtained with reactant Jacobi coordinates are in excellent
agreement with hyperspherical close coupling calculations per-
formed with the ABC code. This demonstrates that the required
coordinate transformation procedure is both efficient and accurate.
Surprisingly, it has been found that the differential cross section
converges for the same number of helicity components, Ωmax )
11, when using reactant or product coordinates. However, the
calculations using reactant coordinates are well converged with a
lower number of angular grid points because of the permutation
of the two identical nuclei is directly expressed in this set of
coordinates. As a consequence, the use of reactant coordinates is
more efficient, by nearly a factor of 2.

Figure 11. Velocity map distribution of the differential cross section (in Å2/sr) for the Li + HF(V ) 0, j ) 0) f LiF(V′) + H at translational
energies of (a) 0.241, (b) 0.136, and (c) 0.097 eV.

Figure 12. Rotational alignment parameters for the products as a
function of scattering angle for the Li + HF(V ) j ) 0) f LiF(V′ )
0, 1, 2, j′) + H reaction at translational energies of 0.241. 0.136, and
0.097 eV.
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For the ionic H+ + D2 reaction, the situation is different.
For low J’s, reactant and product coordinates are of comparable
efficiency. However, for high J, and because of the important
role of Coriolis couplings at longer distances, the number of
angular points required to properly describe the products for
high Ω values is very high, the skewing angle is rather small,
and the product channel described using reactants coordinates
is limited to a small angular interval close to γ ) 0. This
problem is considered to be less important for systems involving
heavier atoms since the Coriolis coupling reduces.

The differential cross section has then been calculated for
the H+ + D2 reaction using product Jacobi coordinates. Since
the calculation of all of the partial waves is very demanding
computationally, the random phase approximation is used,
allowing one to calculate only a few selected J values and to
interpolate the S2 matrix elements for intermediate J’s. The
results obtained are in very good agreement with hyperspherical
close coupling calculations performed previously on this system
for E ) 0.524 eV.29 The only difference is the diminution of
the intensity of the existing oscillations in the TI calculations
because of the application of the random phase approach. The
differential cross section is then calculated on a broader energy
range for several HD(V′ ) 0, j′), showing a rather similar
structure, close to that obtained with statistical quantum
methods.104,105

Finally, the reac-WP method has been applied to the Li +
HF(V ) 0, j ) 0) reactive collisions as a prototype of LH + H′
f L + HH′ reactions, which is very well adapted for the use
of reactant Jacobi coordinates.27 Thus, the state-to-state dif-
ferential cross sections have been simulated for the first time
using an “exact” quantum treatment. The results are compared
with previous QCT calculations,41 and the rotational alignment
of the LiF(V′, j′) products indicates that j′ is perpendicular to
the k-k′ plane for the forward/backward peaks, while it seems
to be nearly isotropically distributed for sideways distributions.
The differential cross sections are well converged by using only
up to Ω ) 15, and this shows the ability of the present method
to describe such reactions.
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Chem. 2000, 80, 916.

(35) Jasper, A. W.; Hack, M. D.; Truhlar, D. G.; Piecuch, P. J. Chem.
Phys. 2002, 116, 8353.

(36) Aguado, A.; Paniagua, M.; Sanz, C.; Roncero, O. J. Chem. Phys.
2003, 119, 10088.

(37) Becker, C. H.; Casavecchia, P.; Tiedemann, P. W.; Valentini, J. J.;
Lee, Y. T. J. Chem. Phys. 1980, 73, 2833.

(38) Loesch, H. J.; Stienkemeier, F. J. Chem. Phys. 1993, 98, 9570.
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